Combining imaging and patch clamp recording in slices

G.J. Augustine
March 4, 2003
NUS/NNI

georgea@neuro.duke.edu
Fluorescence microscopy
Figure 1 - Jablonski diagram. Horizontal lines indicate the various electronic configurations of a molecule and the energy of the molecule is represented on the vertical axis, with a higher vertical position indicating a larger amount of energy in the molecule.
Figure 2 – Fluorescence excitation spectrum.
Figure 3 – Electronic transitions from the excited state during fluorescence
Figure 4 – Fluorescence emission spectrum. Note that the emission spectrum is always shifted to longer wavelengths relative to the excitation spectrum. This shift is termed the Stokes Shift.
Figure 5 – Arc lamps. A, components of an arc lamp. B, emission spectrum of mercury arc lamp. C, emission spectrum of xenon arc lamp. Note different vertical scales for B and C.
Figure 6 – Basic optical filters used in fluorescence microscopy.
Figure 7 – Epifluorescence microscopes use the objective lens both to deliver excitation light and to collect emitted fluorescence.
Figure 8 – Dichroic mirrors are the key to epifluorescence microscopy. A, optical properties of a dichroic mirror. B, Diagram of the position of a dichroic mirror in the light path of a epifluorescence microscope.
Figure 9 – Two examples of filter sets useful for imaging fluorescein on an epifluorescence microscope.
Figure 10 - Fluo-3, a fluorescence Ca$^{2+}$ indicator that does not shift its spectral properties upon binding calcium.
Figure 11 - Other fluorescence indicators that do not shift their spectral properties upon binding calcium. Note differences in affinity and excitation/emission spectra between indicators.
\[
[Ca^{2+}] = K_d \left(\frac{F - F_{\text{min}}}{F_{\text{max}} - F} \right)
\]

Figure 12 - Relationship between fluorescence emission of fluo-3 and calcium concentration.
Figure 13 - Fura-2 and Indo-1, fluorescence indicators that shift their spectral properties upon binding calcium.
\[[\text{Ca}^{2+}] = K_d \left(\frac{R-R_{\text{min}}}{R_{\text{max}}-R} \right) \left(\frac{S_{f2}}{S_{b2}} \right) \]

Figure 14 - Relationship between fluorescence excitation ratio of fura-2 and calcium concentration.
Figure 15 - AM ester loading of organic indicator dyes.
Figure 16 - Fluorescence resonance energy transfer (FRET) depends on close proximity of two fluorophores.
Figure 17 - Cameleon, a genetically encoded Ca²⁺ indicator.
Fluorescence imaging in brain slices
Figure 18 – Water immersion objectives provide the long working distance required for combining patch clamp recording with imaging in brain slices.
Table 1
Specifications of the microscope objectives used in our lab

<table>
<thead>
<tr>
<th>Objective</th>
<th>Mag.</th>
<th>Immersion Medium</th>
<th>NA</th>
<th>WD</th>
<th>UV Transmission</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeiss Neofluar</td>
<td>6.3×</td>
<td>Air</td>
<td>0.2</td>
<td>10.8 mm</td>
<td>75 %</td>
<td>$618 *</td>
</tr>
<tr>
<td>Zeiss PanNeofluar, ICS</td>
<td>10×</td>
<td>Air</td>
<td>0.3</td>
<td>5.6</td>
<td>65</td>
<td>707</td>
</tr>
<tr>
<td>Nikon Achromat</td>
<td>10×</td>
<td>Air</td>
<td>0.25</td>
<td>5.2</td>
<td>69</td>
<td>50</td>
</tr>
<tr>
<td>Nikon Fluor</td>
<td>10×</td>
<td>Air</td>
<td>0.5</td>
<td>0.88</td>
<td>73</td>
<td>1132</td>
</tr>
<tr>
<td>Zeiss Achromat</td>
<td>40×</td>
<td>Water</td>
<td>0.75</td>
<td>1.6</td>
<td>34</td>
<td>1446</td>
</tr>
<tr>
<td>Zeiss Achromplan, ICS</td>
<td>40×</td>
<td>Water</td>
<td>0.75</td>
<td>1.9</td>
<td>23</td>
<td>1524</td>
</tr>
<tr>
<td>Olympus</td>
<td>40×</td>
<td>Water</td>
<td>0.7</td>
<td>3.2</td>
<td>78</td>
<td>2313</td>
</tr>
<tr>
<td>Nikon Achromat</td>
<td>40×</td>
<td>Water</td>
<td>0.5</td>
<td>2.0</td>
<td>9.5</td>
<td>1381</td>
</tr>
<tr>
<td>Nikon Achromat</td>
<td>40×</td>
<td>Air</td>
<td>0.65</td>
<td>0.6</td>
<td>0.7</td>
<td>96</td>
</tr>
<tr>
<td>Nikon Fluor</td>
<td>40×</td>
<td>Oil</td>
<td>1.3</td>
<td>0.22</td>
<td>46</td>
<td>1740</td>
</tr>
<tr>
<td>Leitz Fluotar</td>
<td>50×</td>
<td>Water</td>
<td>1.0</td>
<td>0.68</td>
<td></td>
<td>2339</td>
</tr>
<tr>
<td>Nikon Plan Achromat</td>
<td>60×</td>
<td>Air</td>
<td>0.7</td>
<td>3.05</td>
<td>1.7</td>
<td>2813</td>
</tr>
<tr>
<td>Zeiss Achromplan, ICS</td>
<td>63×</td>
<td>Water</td>
<td>0.9</td>
<td>1.3</td>
<td></td>
<td>2144</td>
</tr>
<tr>
<td>Zeiss Neofluar</td>
<td>63×</td>
<td>Oil</td>
<td>1.25</td>
<td>0.35</td>
<td>20</td>
<td>2342 *</td>
</tr>
</tbody>
</table>

Abbreviations: Mag. = magnifications; NA = numerical aperture; WD = working distance; UV = ultraviolet light (364 nm); ICS = infinity-corrected optics

* = only used objectives are sold now; infinity corrected replacements are available.
Figure 19 – An example of a set-up used for combining patch clamp recording with imaging in brain slices.
Figure 20 – Proper application of positive pressure is critical when using dye-filled patch pipettes in brain slices.
Figure 21 – Time-dependent diffusion of dye solution from a patch pipette to the dendrites of a cerebellar Purkinje neuron.
Figure 22 – Ratiometric measurement of [Ca] in a brain slice neuron filled with fura-2.
Figure 23 – Experimental arrangement for stimulating parallel fiber synapses in cerebellar slices.
Figure 25 – Changes in Purkinje cell [Ca] produced by stimulation of parallel fiber (PF) synapses. A – control response; B – responses after AMPA-type glutamate receptors are blocked by CNQX; C - responses after AMPA-type glutamate receptors are blocked by CNQX and metabotropic glutamate receptors are blocked by MCPG.
Figure 26 – Localized [Ca] responses produced in Purkinje cell synaptic spines following PF activity. A – fluorescence image; B,C – zoomed image of spiny dendrites, with changes in [Ca] produced by parallel fiber activity indicated by pseudocolor scale. AMPA-type glutamate receptors were blocked by CNQX treatment.
Figure 27 – Photolysis of a “caged” IP3 compound produces a rapid jump in IP3 concentration.
Figure 28 – Set-up for combining fluorescence imaging with uncaging in brain slices.
Figure 29 – Uncaging IP3 at sites of active PF synapses. Left - Local rise in [Ca] indicates location of active PF synapses. Right – Focusing a spot of UV light at the same location uncages IP3 and yields a local release of intracellular Ca.
Figure 30 – Uncaging IP3 causes long-term depression of PF synaptic transmission. C – PF synaptic currents recorded from a Purkinje cell before and after uncaging IP3. D – Time course of changes in PF synaptic currents following uncaging of IP3 at 0 timepoint. E – Long-term depression is only observe when IP3 is uncaged at site of active PF synapses.
References

