FCS in Organisms      FCS Theory      Peptide Membrane Interaction      Receptor Proteins      SW-FCCS      Imaging FCS      Reviews

FCS

[10] Macháň R, Foo YH, Wohland T. On the Equivalence of FCS and FRAP: Simultaneous Lipid Membrane Measurements. Biophys J. 2016 Jul 12;111(1):152-61. doi: 10.1016/j.bpj.2016.06.001.

[9] Sun, G.; Guo, S.M.; Teh, .; Korzh, V,; Bathe, M.; Wohland, T. Bayesian Model Selection Applied to the Analysis of FCS Data of Fluorescent Proteins in vitro and in vivo, Analytical chemistry (2015) Apr 21; 87(8): 4326-33

[8] Guo, S-M.; He, J.; Monnier, N.; Sun, G.; Wohland, T.; Bathe, M. A Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data, Anal Chem 84 (9) (2012) 3880-3888.

[7] Foo, Y.H.; Naredi-Rainer, N.; Lamb, D.C.; Ahmed, S.; Wohland, T. Factors Affecting the Quantification of Biomolecular Interactions by Fluorescence Cross-Correlation Spectroscopy, Biophys J, 102 (2012) 1174-1183.

[6] Sankaran, J.; Manna, M.; Guo, L.; Kraut, R.; Wohland, T. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy, Biophys J, 97 (2009) 2630-2639.

[5] Pan, X.; Shi, X.; Korzh, V.; Yu, H.; Wohland, T. Line scan fluorescence correlation spectroscopy for three-dimensional microfluidic flow velocity measurements, J Biomed Opt, 14 (2009) 024049.

[4] Hwang, L.C.; Wohland, T. Single wavelength excitation fluorescence cross-correlation spectroscopy with spectrally similar fluorophores: resolution for binding studies, J Chem Phys, 122 (2005) 114708.

[3] Milon, S.; Hovius, R.; Vogel, H.; Wohland, T. Factors influencing fluorescence correlation spectroscopy measurements on membranes: simulations and experiments, Chem Phys, 288 (2003) 171-186.

[2] Wohland, T.; Rigler, R.; Vogel, H. The standard deviation in fluorescence correlation spectroscopy, Biophys J, 80 (2001) 2987-2999.

[1] Meseth, U.; Wohland, T.; Rigler, R.; Vogel, H. Resolution of fluorescence correlation measurements, Biophys J, 76 (1999) 1619-1631.

top

FCCS/SW-FCCS

[11] Wang Y, Wang X, Wohland T, Sampath K. Extracellular interactions and ligand degradation shape the Nodal morphogen gradient. Elife. 2016 Apr 21;5.

[10] Foo, Y.H.; Naredi-Rainer, N.; Lamb, D.C.; Ahmed, S.; Wohland, T. Factors Affecting the Quantification of Biomolecular Interactions by Fluorescence Cross-Correlation Spectroscopy, Biophys J, 102 (2012) 1174-1183.

[9] Ma, X.; Ahmed, S.; Wohland, T. EGFR activation monitored by SW-FCCS in live cells, Front Biosci (Elite Ed), 3(2011) 22-32.

[8] Sudhaharan, T.; Liu, P.; Foo, Y.H.; Bu, W.; Lim, K.B.; Wohland, T.; Ahmed, S. Determination of in vivo dissociation constant, KD, of Cdc42-effector complexes in live mammalian cells using single wavelength fluorescence cross-correlation spectroscopy, J Biol Chem, 284 (2009) 13602-13609.

[7] Shi, X.; Foo, Y.H.; Sudhaharan, T.; Chong, S.W.; Korzh, V.; Ahmed, S.; Wohland, T. Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy, Biophys J, 97 (2009) 678-686.

[6] Pan, X.T.; Foo, W.; Lim, W.; Fok, M.H.Y.; Liu, P.; Yu, H.; Maruyama, I.; Wohland, T. Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements, Review of Scientific Instruments, 78 (2007) 053711.

[5] Liu, P.; Sudhaharan, T.; Koh, R.M.L.; Hwang, L.C.; Ahmed, S.; Maruyama, I.N.; Wohland, T. Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy, Biophysical Journal, 93 (2007) 684-698.

[4] Hwang, L.C.; Leutenegger, M; Gosch, M.; Lasser, T.; Rigler, P.; Meier, W.; Wohland, T. Prism-based multicolor fluorescence correlation spectrometer, Opt Lett, 31 (2006) 1310-1312.

[3] Hwang, L.C.; Gosch, M.; Lasser, T.; Wohland, T. Simultaneous multicolor fluorescence cross-correlation spectroscopy to detect higher order molecular interactions using single wavelength laser excitation, Biophys J, 91 (2006) 715-727.

[2] Hwang, L.C.; Wohland, T. Single wavelength excitation fluorescence cross-correlation spectroscopy with spectrally similar fluorophores: resolution for binding studies, J Chem Phys, 122 (2005) 114708.

[1] Hwang, L.C.; Wohland, T. Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation, Chemphyschem, 5 (2004) 549-551.

top

Imaging FCS (ITIR-FCS and SPIM-FCS)

[19] Huang S, Lim SY, Gupta A, Bag N, Wohland T. Plasma membrane organization and dynamics is probe and cell line dependent. Biochim Biophys Acta. 2016 Dec 18. pii: S0005-2736(16)30402-3. doi: 10.1016/j.bbamem.2016.12.009. [Epub ahead of print](Video Abstract)

[18] Bag N, Ng XW, Sankaran J, Wohland T. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes. Methods and Applications in Fluorescence. 4 (3), 034003

[17] Macháň R, Foo YH, Wohland T. On the Equivalence of FCS and FRAP: Simultaneous Lipid Membrane Measurements. Biophys J. 2016 Jul 12;111(1):152-61. doi: 10.1016/j.bpj.2016.06.001.

[16] Ge J, Zhang CW, Ng XW, Peng B, Pan S, Du S, Wang D, Li L, Lim KL, Wohland T, Yao SQ. Puromycin Analogues Capable of Multiplexed Imaging and Profiling of Protein Synthesis and Dynamics in Live Cells and Neurons. Angew Chem Int Ed Engl. 2016 Mar 11. doi: 10.1002/anie.201511030. [Epub ahead of print]

[15] Krieger, J.W; Singh, A.P; Bag, N; Garbe, C.S; Saunders, T.E; Langowski, J; Wohland, T. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat Protoc. 2015 Dec;10(12):1948-74.

[14] Singh, A.P.; Wohland, T. Applications of imaging fluorescence correlation spectroscopy, Curr. Op. Chem. Biol. (2014) 20:29-35.

[13] Bag, N.; Yap, D.H.X.; Wohland, T. Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy, BBA Biomembranes 1838 (2014) 802–813.

[12] Bag, N.; Wohland, T. Imaging Fluorescence Fluctuation Spectroscopy: New Tools for Quantitative Bioimaging. Annu. Rev. Phys. Chem. 65 (2014) 225–48.

[11] Bag, N; Ali, A; Chauhan, VS; Wohland, T; Mishra, A. Membrane destabilization by monomeric hIAPP observed by imaging fluorescence correlation spectroscopy, Chem Commun (Camb). 49 (80) (2013) 9155-7.

[10] Sankaran, J.; Bag, N.; Kraut, R.S.; Wohland, T. Accuracy and precision in camera-based fluorescence correlation spectroscopy measurements, Anal. Chem. 85 (8) (2013) 3948-54

[9] Singh, A.P.; Krieger, J.W.; Buchholz, J.; Charbon, E.; Langowski, J.; Wohland, T. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy, Optics Express, 21(7) (2013) 8652-8668. Supplementary material

[8] Bag, N.; Sankaran, J.; Paul, A.; Kraut, R.; Wohland, T. Calibration and Limits of Camera-Based Fluorescence Correlation Spectroscopy: A Supported Lipid Bilayer Study, Chemphyschem 13(11) (2012) 2784-94

[7] Wohland, T.; Shi, X.; Sankaran, J.; Stelzer, E.H. Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments, Opt Express, 18 (2010) 10627-10641.

[6] Sankaran, J.; Shi, X.; Ho, L.Y.; Stelzer, E.H.; Wohland, T. ImFCS: a software for imaging FCS data analysis and visualization, Opt Express, 18 (2010) 25468-25481.

[5] Ang, P.K.; Jaiswal, M.; Lim, C.H.; Wang, Y.; Sankaran, J.; Li, A.; Lim, C.T.; Wohland, T.; Barbaros, O.; Loh, K.P. A bioelectronic platform using a graphene-lipid bilayer interface,ACS Nano, 4 (2010)7387-7394.

[4] Sankaran, J.; Manna, M.; Guo, L.; Kraut, R.; Wohland, T. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy, Biophys J, 97 (2009) 2630-2639.

[3] Guo, L.; Har, J.Y.; Sankaran, J.; Hong, Y.M.; Kannan, B.; Wohland, T. Molecular diffusion measurement in lipid Bilayers over wide concentration ranges: A comparative study, Chemphyschem, 9 (2008) 721-728.

[2] Kannan, B.; Guo, L.; Sudhaharan, T.; Ahmed, S.; Maruyama, I.; Wohland, T. Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera, Anal Chem, 79 (2007) 4463-4470.

[1] Kannan, B.; Har, J.Y.; Liu, P.; Maruyama, I.; Ding, J.L.; Wohland, T. Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy, Anal Chem, 78 (2006) 3444-3451.

top

Membranes and Peptide-Membrane Interaction

[19] Bag, N; Ali, A; Chauhan, VS; Wohland, T; Mishra, A. Membrane destabilization by monomeric hIAPP observed by imaging fluorescence correlation spectroscopy, Chem Commun (Camb). 49 (80) (2013) 9155-7.

[18] Kay, J.G.; Koivusalo, M.; Ma, X.; Wohland, T.; Grinstein, S. Phosphatidylserine dynamics in cellular membranes, Mol Bio Cell 23 (11) (2012) 2198-2212.

[17] Kraut, R.; Bag, N.; Wohland, T. Fluorescence Correlation Methods for Imaging Cellular Behavior of Sphingolipid-Interacting Probes Methods in Cell Biology 108 (2012) 395-427.

[16] Zhou, L.; Liu, S.P.; Chen, L.Y.; Li, J.; Ong, L.B.; Guo, L.; Wohland, T.; Tang, C.C.; Lakshminarayanan, R,; Mavinahalli, J.; Verma, C.; Beuerman, R.W. The structural parameters for antimicrobial activity, human epithelial cell cytotoxicity and killing mechanism of synthetic monomer and dimer analogues derived from hBD3 C-terminal region, Amino Acids, 40 (2010) 123-133.

[15] Leptihn, S.; Har, J.Y.; Wohland, T.; Ding, J.L. Correlation of charge, hydrophobicity, and structure with antimicrobial activity of S1 and MIRIAM peptides, Biochemistry, 49 (2010) 9161-9170.

[14] Sankaran, J.; Manna, M.; Guo, L.; Kraut, R.; Wohland, T. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy, Biophys J, 97 (2009) 2630-2639.

[13] Zhang, D.; Manna, M.; Wohland, T.; Kraut, R. Alternate raft pathways cooperate to mediate slow diffusion and efficient uptake of a sphingolipid tracer to degradative and recycling compartments, J Cell Sci, (2009).

[12] Yu, L.; Guo, L.; Ding, J.L.; Ho, B.; Feng, S.S.; Popplewell, J.; Swann, M.; Wohland, T. Interaction of an artificial antimicrobial peptide with lipid membranes, Biochim Biophys Acta, 1788 (2009) 333-344.

[11] Olaru, A.; Gheorghiu, M.; David, S.; Wohland, T.; Gheorghiu, E. Assessment of the multiphase interaction between a membrane disrupting peptide and a lipid membrane, J. Phys. Chem. B, 113 (2009) 14369-14380.

[10] Leptihn, S.; Har, J.Y.; Chen, J.; Ho, B.; Wohland, T.; Ding, J.L. Single molecule resolution of the antimicrobial action of quantum dot-labeled sushi peptide on live bacteria, BMC Biol, 7 (2009) 22.

[9] Ang, P.K.; Loh, K.P.; Wohland, T.; Nesladek, M.; Van Hove, E. Supported lipid bilayer on nanocrystalline diamond: dual optical and field-effect sensor for membrane disruption, Adv Funct Mater, 19 (2009) 109-116.

[8] Hebbar, S.; Lee, E.; Manna, M.; Steinert, S.; Kumar, G.S.; Wenk, M.; Wohland, T.; Kraut, R. A fluorescent sphingolipid binding domain peptide probe interacts with sphingolipids and cholesterol-dependent raft domains, J Lipid Res, 49 (2008) 1077-1089.

[7] Yu, L.; Ding, J.L.; Ho, B.; Feng, S.S.; Wohland, T. Investigation of the mechanisms of antimicrobial peptides interacting with membranes by fluorescence correlation spectroscopy, The Open Chemical Physics Journal, 1 (2008) 62-79.

[6] Yu, L.L.; Tan, M.Y.; Ho, B.; Ding, J.L.; Wohland, T. Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: Aggregation of a lipopolysaccharide, Analytica Chimica Acta, 556 (2006) 216-225.

[5] Li, P.; Sun, M.; Wohland, T.; Yang, D.W.; Ho, B.; Ding, J.L. Molecular mechanisms that govern the specificity of sushi peptides for gram-negative bacterial membrane lipids, Biochemistry, 45 (2006) 10554-10562.

[4] Li, P.; Sun, M.; Wohland, T.; Ho, B.; Ding, J.L. The molecular mechanism of interaction between sushi peptide and pseudomonas endotoxin, Cell Mol Immunol, 3 (2006) 21-28.

[3] Yu, L.; Ding, J.L.; Ho, B.; Wohland, T. Investigation of a novel artificial antimicrobial peptide by fluorescence correlation spectroscopy: an amphipathic cationic pattern is sufficient for selective binding to bacterial type membranes and antimicrobial activity, Biochim Biophys Acta, 1716 (2005) 29-39.

[2] Yu, L.; Bow, H.; Ding, J.L.; Wohland, T. Measuring the binding of an antimicrobial peptide with LPS by Fluorescence Correlation Spectroscopy, J. Teknologi F, 41 (2004) 101-112.

[1] Li, P.; Wohland, T.; Ho, B.; Ding, J.L. Perturbation of lipopolysaccharide (LPS) micelles by Sushi 3 (S3) antimicrobial peptide - The importance of an intermolecular disulfide bond in S3 dimer for binding, disruption, and neutralization of LPS, Journal of Biological Chemistry, 279 (2004) 50150-50156.

top

Receptor Proteins

[12] Yavas S, Macháň R, Wohland T. The Epidermal Growth Factor Receptor Forms Location-Dependent Complexes in Resting Cells. Biophys J. 2016 Nov 15;111(10):2241-2254

[11] Bag, N; Huang, S; Wohland, T. Plasma Membrane Organization of Epidermal Growth Factor Receptor in Resting and Ligand-Bound States. Biophys J. 2015 Nov 3;109(9):1925-36.

[10] Ma, X.; Ahmed, S.; Wohland, T. EGFR activation monitored by SW-FCCS in live cells, Front Biosci (Elite Ed), 3(2011) 22-32.

[9] Dobkin-Bekman, M.; Naidich, M.; Rahamim, L.; Przedecki, F.; Almog, T.; Lim, S.; Melamed, P.; Liu, P.; Wohland, T.; Yao, Z.; Seger, R.; Naor, Z. A preformed signaling complex mediates GnRH-activated ERK phosphorylation of paxillin and FAK at focal adhesions in L beta T2 gonadotrope cells, Mol Endocrinol, 23 (2009) 1850-1864.

[8] Liu, P.; Sudhaharan, T.; Koh, R.M.L.; Hwang, L.C.; Ahmed, S.; Maruyama, I.N.; Wohland, T. Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy, Biophysical Journal, 93 (2007) 684-698.

[7] Kannan, B.; Guo, L.; Sudhaharan, T.; Ahmed, S.; Maruyama, I.; Wohland, T. Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera, Anal Chem, 79 (2007) 4463-4470.

[6] Pick, H.; Preuss, A.K.; Mayer, M.; Wohland, T.; Hovius, R.; Vogel, H. Monitoring expression and clustering of the ionotropic 5HT3 receptor in plasma membranes of live biological cells, Biochemistry, 42 (2003) 877-884.

[5] Whelan, R.J.; Wohland, T.; Neumann, L.; Huang, B.; Kobilka, B.K.; Zare, R.N. Analysis of bimolecular interactions using a miniaturized surface plasmon resonance sensor, Analytical Chemistry, 74 (2002) 4570-4576.

[4] Neumann, L.; Wohland, T.; Whelan, R.J.; Zare, R.N.; Kobilka, B.K. Functional immobilization of a ligand-activated G-protein-coupled receptor, Chembiochem, 3 (2002) 993-998.

[3] Wohland, T.; Friedrich, K.; Pick, H.; Preuss, A.; Hovius, R.; Vogel, H. The Characterization of a Transmembrane Receptor Protein by Fluorescence Correlation Spectroscopy, in: R. Rigler, T. Basche, M. Orrit (Eds.) Single Molecule Spectroscopy: Nobel Conference Lectures, Springer, Berlin, 2001, pp. 195-210.

[2] Vallotton, P.; Tairi, A.P.; Wohland, T.; Friedrich-Benet, K.; Pick, H.; Hovius, R.; Vogel, H. Mapping the antagonist binding site of the serotonin type 3 receptor by fluorescence resonance energy transfer, Biochemistry, 40 (2001) 12237-12242.

[1] Wohland, T.; Friedrich, K.; Hovius, R.; Vogel, H. Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand, Biochemistry, 38 (1999) 8671-8681.

top

FCS in Organisms

[11] Ng XW, Teh C, Korzh V, Wohland T. The secreted signaling protein wnt3 is associated with membrane domains in vivo: a SPIM-FCS study. Biophys J. 2016 Jul 26;111(2):418-29.

[10] Wang Y, Wang X, Wohland T, Sampath K. Extracellular interactions and ligand degradation shape the Nodal morphogen gradient. Elife. 2016 Apr 21;5. pii: e13879. doi: 10.7554/eLife.13879. [Epub ahead of print]

[9] Krieger, J.W; Singh, A.P; Bag, N; Garbe, C.S; Saunders, T.E; Langowski, J; Wohland, T. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat Protoc. 2015 Dec;10(12):1948-74.

[8] Teh C, Sun G, Shen H, Korzh V, Wohland T. Modulating expression level of secreted Wnt3 influences cerebellum development in zebrafish transgenics, Development, 2015 Nov 1;142(21):3721-33

[7] Sun, G.; Guo, S.M.; Teh, .; Korzh, V,; Bathe, M.; Wohland, T. Bayesian Model Selection Applied to the Analysis of FCS Data of Fluorescent Proteins in vitro and in vivo, Anal Chem (2015) Apr 21; 87(8): 4326-33.

[6] Korzh, V.; Wohland, T. Analysis of properties of single molecules in vivo or... why small fish is better than empty dish, Russian Journal of Developmental Biology 43 (2) (2012) 67-76.

[5] Wang, X.; Wohland, T.; Korzh, V. Developing in vivo biophysics by fishing for single molecules, Dev Biol, 347 (2010) 1-8.

[4] Shi, X.; Foo, Y.H.; Sudhaharan, T.; Chong, S.W.; Korzh, V.; Ahmed, S.; Wohland, T. Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy, Biophys J, 97 (2009) 678-686.

[3] Pan, X.; Shi, X.; Korzh, V.; Yu, H.; Wohland, T. Line scan fluorescence correlation spectroscopy for three-dimensional microfluidic flow velocity measurements, J Biomed Opt, 14 (2009) 024049.

[2] Korzh, S.; Pan, X.; Garcia-Lecea, M.; Winata, C.L.; Wohland, T.; Korzh, V.; Gong, Z. Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish, BMC Dev Biol, 8 (2008) 84.

[1] Pan, X.; Yu, H.; Shi, X.; Korzh, V.; Wohland, T. Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy, J Biomed Opt, 12 (2007) 014034.

top

Reviews

[11] Ng, X.W.; Bag, N.; Wohland, T. Characterization of Lipid and Cell Membrane Organization by the Fluorescence Correlation Spectroscopy Diffusion Law, CHIMIA International Journal for Chemistry 69 (3), 112-119.

[10] Machan, R.; Wohland, T. Recent Applications of Fluorescence Correlation Spectroscopy in Live Systems, FEBS Letters 588 (2014) 3571–3584.

[9] Singh, A.P.; Wohland, T. Applications of imaging fluorescence correlation spectroscopy, Curr. Op. Chem. Biol. (2014) 20:29-35.

[8] Bag, N.; Wohland, T. Imaging Fluorescence Fluctuation Spectroscopy: New Tools for Quantitative Bioimaging. Annu. Rev. Phys. Chem. 65 (2014) 225–48.

[7] Korzh, V.; Wohland, T. Analysis of properties of single molecules in vivo or... why small fish is better than empty dish, Russian Journal of Developmental Biology 43 (2) (2012) 67-76.

[6] Wang, X.; Wohland, T.; Korzh, V. Developing in vivo biophysics by fishing for single molecules, Dev Biol, 347 (2010) 1-8.

[5] Liu, P.; Ahmed, S.; Wohland, T. The F-techniques: advances in receptor protein studies, Trends Endocrinol Metab, 19 (2008) 181-190.

[4] Hwang, L.C.; Wohland, T. Recent advances in fluorescence cross-correlation spectroscopy, Cell Biochem Biophys, 49 (2007) 1-13.

[3] Li, P.; Sun, M.; Wohland, T.; Ho, B.; Ding, J.L. The molecular mechanism of interaction between sushi peptide and Pseudomonas endotoxin, Cell Mol Immunol, 3 (2006) 21-28.

[2] Hwang, L.C.; Wohland, T. Fluorescence Correlation Spectroscopy for the Characterization of Membranes: A Short Review, Songkhlanakarin J. Sci. Technol., 24 (2002) 1045-1058.

[1] Hovius, R.; Vallotton, P.; Wohland, T.; Vogel, H. Fluorescence techniques: shedding light on ligand-receptor interactions, Trends Pharmacol Sci, 21 (2000) 266-273.

top
  • NUS
  • Biophysical Fluorescence Laboratory